折板單元本身的水力特性對絮體顆粒碰撞的影響主要表現在:折板單元的造渦作用和連續(xù)均勻的單元設置改善了紊動能耗的分布,從而提高了絮凝方式的數值,因此提高了絮凝效果。水流通過折板單元,在漸擴段與漸縮段的作用下,可以形成對稱渦旋及單側渦旋。波峰處水流邊界層的分離是產生渦旋的動因。根據渦旋的擴散性,會進一步分解為小尺度的渦旋,直到與水流微團相關的雷諾數低到不能再產生更小的渦旋為止。
眾多的水處理工作者均認為:只有具有與顆粒尺寸相同數量級的渦旋才對碰撞有效,其它的不起作用。由于實際的絮體顆粒尺寸變化幅度是1-1000um,因此,有很大一段的渦旋起作用,不能嚴格劃分大小渦旋的界限。紊動的擴散作用主要取決于大尺度的紊動。大渦旋的尺度可以認為與折板單元的尺度數量級相同。折板單元連續(xù)的縮放,使水流形成大量不同尺度的渦旋,促進了水流內部絮體顆粒間的相對運動,增加了碰撞機會,所以相對于隔板絮凝池,絮凝效果大大提高。
絮凝效果的好壞主要依據形成的礬花情況。實際生產中,絮凝的效果大都依據后續(xù)的沉淀出水濁度進行評價,但這已不是絮凝階段結果的直接反映,沉淀出水濁度還與沉淀效果有很大關系。另一方面,即使對絮凝效果進行直接評價,評價大多也只是停留在對礬花大小和密實與否的感官描述上,缺少可操作的量化評價標準,這與當前還比較缺乏相對合理的絮凝評價標準有關 [3] 。
為使水流中的顆粒相互碰撞,就使其與水流產生相對運動。水中的顆粒與水流產生相對運動好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時造成的慣性效應來進行凝聚;②改變水流方向。在湍流中充滿著大大小小的渦旋。其中大渦旋能夠使流體進一步的摻混,使顆粒均勻擴散于流體中;同時創(chuàng)造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進顆粒的碰撞,提高絮凝效率。微渦旋理論認為:水中微渦旋尺度與礬花顆粒尺度相近時混凝反應充分。而小渦旋的動力學致因是慣性效應,特別是湍流渦旋的離心慣性效應,由此可見湍流中微小渦旋的離心慣性效應是絮凝的重要動力學致因。
矩形往復式絮凝池中普遍存在死水區(qū),死水區(qū)的存在,不僅容易形成沉積物的堆積,而且嚴重阻礙了水流的運動。特別是在絮凝后期,水流速度逐漸減小時,死水區(qū)對水流有越來越大的的負面影響。而圓弧形渠道,幾乎不存在死水區(qū),可以有效的消除死水區(qū)帶來的負面影響。且圓弧區(qū)的水流速度也比矩形渠道的分布均勻,有利于節(jié)約能耗。
傳統(tǒng)往復式絮凝池在矩形渠道拐彎處速度方向改變?yōu)?80°直接轉變,而圓弧形渠道拐彎處的速度方向則是逐漸變化,變化比矩形拐彎渠道平緩的多。而其圓弧形拐彎渠道能夠產生慣性離心力,進而產生各種微渦旋,根據王紹文教授提出的“慣性效應是絮凝的動力學致因”可知,圓弧形渠道能夠提高絮凝效率,即絮凝效率較高